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ABSTRACT:  In this paper a special case of Burr type-XII distribution is discovered as a transformed
version of the Pareto distribution. A finite mixture of the said Burr distribution is proposed to model a
heterogeneous population that comprise a finite number of subgroups mixed together in an unknown
proportion and with observations that are characterized by one of the one of the finite Burr components
provided the data is available on the mixture only. An ordinary type-I right censored sample mixture data
is considered. An extensive simulation study is conducted to highlight some interesting properties of the
Bayes estimates of the proposed Burr mixture assuming conjugate and uninformative priors. A real life
application of the proposed mixture is presented as well.
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1 INTRODUCTION
[1] has suggested a number of cumulative distribution
functions yielding a wide range of values of skewness and
kurtosis to be used to fit almost any given set of unimodal
data. [2] presents a nice account of the Burr and related
distribution. [3] presented the twelve forms for the
cumulative distribution function of Burr distribution. [1],
[4], [5], [6] and [7] devoted special attention to one of these
forms, called Burr Type-XII, with probability density
function given as below. Both c and k are shape parameters.
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 In life testing and reliability we confront with many
applications where a population under study is supposed to
comprise a finite number of subpopulations mixed together
in an unknown proportion. If the observations are assumed
to be characterized by one of the corresponding finite
members of a family of Burr distribution, the use of the
finite mixture Burr distribution becomes inevitable. Mixtures
of Burr distribution have not been paid much attention in
literature so far. [8] have considered a Burr distribution in
terms of Graphical tests. We have discovered a special case
of Burr Type-XII distribution as a transformed version of the
Pareto distribution and the former has an advantage over the
latter in terms of its more realistic support which is defined
on positive x-axis.
A finite mixture density function with the k  component
densities of the proposed Burr distribution (but with
unknown parameters, ,  1, 2, ,i i k  K ) and with unknown
mixing weights ( ,  1, 2, ,i i k  K ) is defined as under.
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The corresponding mixture Survival function is given by
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where T is the fixed test termination point used in the
ordinary type-I, right censoring. We have discovered the
following special case of Burr Type-XII for ith component of
the mixture.
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It has support on the positive x-axis and hence seems more
suitable to fit lifetime data. It has an interesting relation with
the Exponential distribution as well through Burr-
Exponential link. This proposed Burr distribution is a
transformed version of the following Pareto distribution.
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As quoted by Soegiarso (1992) [9], four types of mixture
samples are considered in real life applications. The Type-IV
mixture samples consist of unlabeled observations, of which
some are labeled afterwards but rest of them are labeled due
to censoring. The real life illustration considers a Type-IV
mixture sample.

2. THE POSTERIOR DISTRIBUTIONS ASSUMING
THE CONJUGATE PRIOR

The suitable informative conjugate prior to be used in this
case is the Gamma prior.
2.1 The Bayes estimators assuming the Gamma Prior
A Type-IV mixture sample of size n units from the Type-I
mixture model described above under ordinary type-I right
censoring is considered. The likelihood function ( , )L α π x
for the censored data is considered as given in equation (1).
Where 1 2( , , , )kx x x xK is data;
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The likelihood function in (2) can take the following form as
well
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n rH  denotes the number of all -k ary  sequences

1 2( , , , )kk k kK of non-negative integers as discussed in [10].
Let ( , ),  1, 2, ,i i iGamma m s i k   K  and

1 2( , , , ) (1,1, ,1).k Dirichlet  π K : K  That is,
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1( ) exp( ),  1, 2, , .im
i i i ig s i k     K  Assuming

independence, the joint prior is incorporated with the
Likelihood (2) to give the following joint posterior
distribution of ,   ( 1, 2, )i i i k   K  as follows.
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The following marginal posterior densities are obtained by
integrating out the nuisance parameters.
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,  1, 2, ,i i k   K
Marginal distributions of ,  1, 2, ,i i k  K  can be obtained in
the same fashion as well.
Under the squared error loss function, the Bayes estimators
are the posterior means of ,  ,  1, 2, ,i i i k   K with respect
to the respective marginal posterior distributions and are
presented below.

1 2

1
1 1

1 2, , ,

1

ˆ ( 1, , 1)
, , ,

( 1) ( )
              ,  1, 2, ,

( ) ( )

k
n r

k

i i

H

i U k k
kk k k

i i i i
r m r mi i

i ji ik i ik

n r r k r k
k k k

r m r m
i k

s A s A






  


        
 

    
 
 





K
KK

K

1 2

1

1 2, , ,

1 1
1

ˆ
, , ,

( )
( 1, ,  2, , 1) ,

( )

                                1, 2, ,

k
n r

k

i

H

i U
kk k k

k
i i

i i k k r mi
j i ik

n r
k k k

r m
r k r k r k

s A

i k









    
 

 
      









K K

K K

K
The expressions for the variances of the Bayes estimators

are
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2.2 The Posterior Distributions assuming the
uninformative Priors

Uninformative priors works in the state of ignorance about
the parameter of interest.
2.2.1 The Bayes estimators assuming the uniform Prior
Let us assume a state of ignorance, that is, are uniformly
distributed over (0, ) . Hence

( ) , 0i i i if k     ,  1, 2, ,i k K and
1 2( , , , ) (1,1, ,1).k Dirichlet  π K : K Assuming

independence we have an improper joint prior that is
proportional to a constant which is incorporated with the
likelihood (2) to yield a proper joint posterior distribution.
After the similar procedure the Bayes estimators assuming
the uniform prior which can be obtained by setting

0,  1i is m  in the expressions for the Bayes estimators
assuming the Gamma prior.

2.2.2 The Bayes estimators assuming the Jeffreys Prior
For the proposed Burr distribution, the Jeffreys priors
are  ( ) 1/ ,  1, 2, ,i i ig i k   K , 0 i    and

1 2( , , , ) (1,1, ,1).k Dirichlet  π K : K  Assuming
independence, the joint prior is incorporated with the
likelihood (2) to have the joint posterior distribution of
unknown parameters. The Bayes estimators assuming the
jeffreys prior which can be obtained by setting

0,  0i is m   in the expressions for the Bayes estimators
assuming the Gamma prior.
3 A SIMULATION STUDY
An extensive simulations study is conducted to investigate
the performance of the Bayes estimators in terms of sample
size, censoring rate and various parameter points. Samples
of sizes 50,  100,  150,  250n  from the two component
mixture of Burr distribution with parameters 1 2,   and 1
such that  1 2( , ) (0.5,1.5),(3,9)    and  1 0.4,0.6  .
Probabilistic mixing was used to generate the mixture data.
The censoring rate in the resulting sample is set
approximately to 10% and 20%. The properties and
comparison of the Bayes estimates are depicted in Tables 1-
2 in terms of sample sizes, mixing proportions and censoring
rates.

4 A REAL LIFE EXAMPLE
A mixture data presented in Everitt and Hand (1981),

1 211 12 1 21 22 2( , , , , , , , )r rt t t t t tt K K , consist of hours to failure
for electronic valves, an indicator valve and for a transmitter
valve, both used in aircraft radar sets. The category of the
failure is not known until the failure occurs. Inspection of
failed units allows the engineers to allocate the failed units
to two different subpopulations. The total number of tests
carried out was 1003. The transformation exp( ) 1x t    of
an exponential distribution yields the said Burr distribution.
The sample characteristics required are also made available
easily.  For instance, - 20,n r  1 21003,  891,  92,n r r  

1 2 983,r r r  
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Table 1 Bayes estimates (Jeffreys) of Burr mixture parameters and their standard errors (in parenthesis) with

1 2 13,  9,  0.4,  0.6      and censoring rates, 10%,20%C  .

10% Censoring

11 2,  ,  )(   n 1̂ 2̂ 1̂

50 3.37042 (1.20231) 9.06943 (2.15165) 0.394986 (0.0691276)

100 3.13938 (0.703413) 9.07597 (1.41536) 0.397902(0.0498643)

150 3.09128 (0.559522) 8.917 (1.16236) 0.395241 (0.0414236)
(3, 9, 0.40)

250 3.04876 (0.382345) 9.0191 (0.850516) 0.398479 (0.0318075)

50 3.1006 (0.774) 9.22706 (2.52174) 0.588959 (0.0720894)

100 3.04615 (0.481875) 9.07567 (1.71137) 0.595205(0.0488415)

150 3.00422 (0.362654) 9.04443 (1.31639) 0.595519(0.0397315)
(3, 9, 0.60)

250 3.0096 (0.267927) 9.04052(1.01117) 0.598233 (0.0305004)

20% Censoring

11 2,  ,  )(   n 1̂ 2̂ 1̂

50 3.89071 (1.82021) 9.05081(2.49022) 0.378545 (0.0764212)

100 3.49255 (1.17498) 8.91389 (1.8142) 0.386272(0.0618352)

150 3.26047 (0.780437) 8.88824 (1.42102) 0.391153 (0.0488964)
(3, 9, 0.40)

250 3.17515(0.564824) 8.92507 (1.08309) 0.39318 (0.0391872)

50 3.4299 (1.17686) 8.9686 (3.0807) 0.570009(0.075344)

100 3.14887 (0.660037) 8.86383 (2.00151) 0.588208 (0.0554302)

150 3.08956 (0.468894) 8.94374 (1.59991) 0.59083(0.0424624)
(3, 9, 0.60)

250 3.04201 (0.331964) 9.01183 (1.17878) 0.597894 (0.0318113)

2 2
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Burr mixture parameters 1 2 1( ,  ,  )   are evaluated using
estimators derived in Sections 2. The Bayes (Jeffreys)
estimates 11 22ˆ ˆ( ,  )   after an obvious re-parameterization as
evident from the functional form of the component densities
of the mixture given in Section 1, are found to be

11 22 1 2ˆ ˆ ˆ ˆ( ,  ) (1/ ,  1/ ) (179.553,320.513)     where
1 2ˆ ˆ0.00557,  0.00312    are the Bayes (Jeffreys)

estimates of Burr mixture parameters with
1 2ˆ ˆ ( ) 0.000204599,  ( ) 0.000414361SE SE  

respectively. The standard errors of the lifetime estimates of
the mixture are computed as

11 22ˆ ˆ( ) 6.6064,  ( ) 34.6218SE SE     The estimate of the
proportion parameter of the Davis mixture is 1ˆ 0.901774 
with 1ˆ ( ) 0.00968426SE   . The proposed estimates
presented here are superior to those presented in [11] in
terms of Bayesian analysis and information on standard error
of the estimates.

5 CONCLUSION
The simulation study highlights some interesting properties
of the Bayes estimates. The estimates of the component
density parameters are generally over-estimated with some
rare

exceptions in case of the second component. Also the extent
of over-estimation is higher in case of the estimates of the
first component density. The estimates of the mixing
proportion parameter are under-estimated. The variances of
the estimates of all the mixture parameters are reduce as the
sample sizes increase. Another remark concerning the
variances of the estimates of the component density
parameter is that increasing (decreasing) the proportion of a
component in the mixture reduces (increases) the variance of
the estimate of the corresponding parameter.
It is interesting to note that the size of this over or under-
estimation is directly proportional to the amount of the
censoring rates and inversely proportional to the sample size.
Also the extent of over-estimation is more intensive for
larger parameter values. The increase in censoring rate
increases the variances of estimates of all the mixture
parameters. Furthermore, increasing the sample size reduces
the variance of all the estimates without any exception. The
increase in proportion of a component in the mixture reduces
the variance of the estimate of the corresponding parameter.
The Bayes (Uniform), the Bayes (Jeffreys) and the Bayes
(Gamma) estimates of the parameter of the first component
density are over-estimated but the extent of over-estimation
is higher in case of Uniform and the least in case of Gamma.
On the other hand, the Bayes (Uniform) estimates of the
parameter of the second component density are over-
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Table 2: A comparison of the Bayes (Uniform) and Bayes (Jeffreys) estimates of Burr mixture parameters and their standard errors (in

parenthesis) with 11 20.5,  1.5,  0.25    and censoring rate, 10%C  .

estimated as well, while the Bayes (Jeffreys) estimates are
generally over- estimated but with some exceptions and the
Bayes (Gamma) estimates are under-estimated. It is
interesting to note that the all the three Bayes estimates of
the mixing proportion are under-estimated.
The Bayes estimates of the parameters of the component
densities with informative (Gamma) prior have the least
variances than their Uniform and Jeffreys counterparts while
the Bayes (Jeffreys) show smaller variances than Bayes
(Uniform). However, the variances of the Bayes (Gamma)
estimates of the mixing proportion parameter may not be the
least all the times.  In other words, the Bayes estimates with
informative (Gamma) prior seem to be more efficient than
their uninformative counterparts with a few exceptions only
in case of the mixing proportion estimates. In the real life
example, the proposed estimates are superior in terms of the
Bayesian analysis, information on and size of standard error
of the estimates.

REFERENCES
[1] Burr, I. W. Cumulative frequency functions. Annals

of Mathematical Statistics. 13, 215-232(1942).
[2] Tadikamalla, P. R. A look at the Burr and Related

Distributions. International Statistical Review, 48,
337-344(1980).

[3] Johnson, N, Kotz, S. and Balakrishnan, N. Continous
Univariate distributions, John Wiley & Sons, Inc.
New York. (1994)

[4] Burr, I. W. On a general system of distributions, III.
The simple range. Journal of the American Statistical
Association. 63, 636-643(1968).

[5] Burr, I. W. Parameters for a general system of

distributions to match a grid of 3  and 4 .

Communications in Statistics. 2, 1-21(1973).
[6] Burr, I. W. and Cislak, P. J. On a general system of

distributions: I. Its curve-shaped characteristics; II.

Prior
1 n

1̂ 2̂ 1̂

50 0.611974(0.250889) 1.56884(0.36821) 0.393967(0.072079)

100 0.53933(0.126465) 1.53816(0.247555) 0.396633(0.049935)

150 0.5238(0.092298) 1.518(0.198886) 0.398937(0.042411)

0.40

250 0.514029(0.066073) 1.50749(0.14596) 0.398427(0.030777)

50 0.538668(0.13124) 1.63726(0.447465) 0.588103(0.070883)

100 0.513777(0.083804) 1.55149(0.277023) 0.597118(0.050738)

150 0.508742(0.061413) 1.537(0.217735) 0.598709(0.037749)

U

N

I

F

O

R

M
 0.60

250 0.505952(0.046685) 1.52397(0.169821) 0.59718(0.029653)

50 0.563245(0.212829) 1.51724(0.350963) 0.394582(0.070558)

100 0.520936(0.120153) 1.51118(0.24209) 0.396616(0.049599)

150 0.512384(0.089417) 1.4997(0.196023) 0.398852(0.042259)

 0.40

250 0.507501(0.0652) 1.49638(0.144842) 0.39834(0.030742)

50 0.519267(0.12693) 1.5424(0.425452) 0.586989(0.070666)

100 0.504399(0.082749) 1.50667(0.271674) 0.596691(0.050753)

150 0.502445(0.060887) 1.5077(0.214871) 0.598474(0.037767)

J

E

F

F

R

E

Y

S

0.60

250 0.50212(0.046417) 1.50679(0.168578) 0.597064(0.029662)

50 0.549771(0.191977) 1.46817(0.327981) 0.549771(0.191977)
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0.40
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150 0.501148(0.060726) 1.48489(0.209638) 0.501148(0.060726)

G

A

M

M

A  0.60

250 0.549771(0.191977) 1.46817(0.327981) 0.549771(0.191977)
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